Fundamental Studies of Polyelectrolyte Multilayer Films: Optical, Mechanical, and Lithographic Property Control
نویسندگان
چکیده
Fundamental Studies of Polyelectrolyte Multilayer Films: Optical, Mechanical, and Lithographic Property Control by Adam John Nolte Submitted to the Department of Materials Science and Engineering on November 21, 2006 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering ABSTRACT Polyelectrolyte multilayers (PEMs) are a versatile type of thin film that is created via layer-bylayer assembly of positively and negatively charged polymers from aqueous solutions. Precise control of the PEM thickness, chemical functionality, and molecular architecture is made possible by changing the polyelectrolytes and assembly conditions during film growth, allowing films to be designed with properties suitable for a given application. This thesis elucidates the intra-film structure and interactions of PEMs through the use of optical, mechanical, and chemical techniques. PEM rugate filters, wherein the refractive index varies through the depth of the film in a continuous, periodic fashion, were constructed by confining silver nanoparticle growth to layers of nanometer-scale thickness. The ability to construct such structures is shown to be dependent on the ability to precisely control the concentration of metal-binding carboxylic acid groups throughout the depth of the film. Software to enable the computation design and optical simulation of these and similar structures was developed. A buckling instability technique was used to probe the Young’s modulus of PEM assemblies as a function of polyelectrolyte type, assembly pH, and the relative humidity of the ambient environment. In particular, a two-plate methodology was developed to allow testing on a broad array of multilayer films, and an experimental apparatus was constructed to allow in situ modulus measurements of PEM films under controlled humidity conditions. These techniques are used to elucidate the strong effects that polyelectrolyte type, assembly pH, and the ambient humidity can have on the stiffness of PEM films. The controlled removal of material from assembled PEMs was accomplished via etching of films in solutions of increasing ionic strength. The properties of etched films and process dynamics point to evidence of a polydispersity-enabled phenomenon driven by dissolution of polyelectrolyte complexes containing chains of disproportionate molecular weight. Kinetic and equilibrium data are presented that support this hypothesis. Beyond elucidation of the underlying mechanisms governing molecular interactions within PEMs, possible practical applications for the particular PEM assemblies described in this thesis are discussed, including conformable interference filters and buckling-enabled patterning. Thesis Supervisors: Michael F. Rubner, TDK Professor of Materials Science and Engineering Robert E. Cohen, St. Laurent Professor of Chemical Engineering
منابع مشابه
Multilayer Nano Films for Corrosion Control
Nano films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer (LBL) sequential assembly technique on treated and untreated mild steel wires. Inhibitor was encapsulated between cationic and anionic polyelectrolyte nano films. This paper mainly focuses on the effect of these nano-films of poly...
متن کاملSteel Coated with Cationic Poly (Ethylenimine) (PEI) and Anionic Poly (Vinylsulfate) (PVS) Polyelectrolyte Multilayer Nanofilm with Different Benzotriazole Inhibitor Concentrations
Nano-films consisting of an alternating sequence of positively and negatively charged polyelectrolyteshave been prepared by means of the electrostatic layer-by-layer sequential assembly technique on mildsteels. The mild steels were pretreated electrochemically to modify the mild steel surface. The modificationof the mild steel surface resulted in increasing the adhesion of the obtained nano-fil...
متن کاملMechanically Responding Functionalized Polyelectrolyte Multilayer Films
The alternate deposition of polyanions and polycations on charged surfaces leads to the formation of nanostructured films called polyelectrolyte multilayers [1,2,3]. The layer by layer deposition process of polyelectrolytes is used to design films equipped by compartments containing "free" polymers or biomolecules [4-6]. Each compartment corresponds to a stratum of an exponentially growing poly...
متن کاملSpatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films.
Cellular patterning on biomaterial surfaces is important in fundamental studies of cell-cell and cell-substrate interactions, and in biomedical applications such as tissue engineering, cell-based biosensors, and diagnostic devices. In this study, we combined the layer-by-layer polyelectrolyte multilayer deposition and photolithographic technique to create an easy and versatile technique for cel...
متن کاملNovel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.
Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular c...
متن کامل